

23 May 2022

Initial Metallurgical Testing from Bardwell Produces Saleable Nickel-Cobalt Concentrate and Excellent Recoveries

Key Highlights

- Conventional flotation concentration techniques on disseminated mineralisation present in Bardwell diamond drill hole DDED21-076 has resulted in a saleable nickel-cobalt concentrate
 - o 71.7% Ni recovered to rougher flotation concentrate
 - The concentrate graded 11.29% Ni, 0.37% Co, 24.0% S, 38.2% Fe and 8.2% MgO with a 60% Ni recovery on open circuit basis through rougher flotation and three stage cleaning circuit
- Sulphides float readily at P₈₀ of 120µm grind size following deslime. From analysis of petrography and level of slimes produced, it appears that coarser grind size optimisation is required
 - Other testing underway includes different grind sizes and times, recovery from slimes,
 upgrade with regrind of concentrate and others
- Sulphide species of concentrate include millerite-violarite-pentlandite
- Extremely low levels of nickel in silicate and nickel in oxides detected in sample
- Analysis underway across lower grade mineralisation to determine beneficiation characteristics
- Optimisation of all metallurgical parameters underway and further updates to be provided on regular basis over the next 12 months
- Testing conducted at XPS Expert Process Solutions, a Glencore company, located at the XPS Technology Centre in Falconbridge (Ontario), Canada

Aston Minerals Limited (**ASX: ASO**, '**Aston Minerals**' or 'the **Company'**) is pleased to report results from the early-stage metallurgical testing of nickel-cobalt sulphide mineralisation from the Boomerang Nickel-Cobalt Target, Edleston Project, Canada.

Managing Director, Dale Ginn, commented "The results we have obtained from our initial testing are comparable to the metallurgical recoveries of existing substantial nickel sulphide operations globally. The testing methods we undertook are all first pass conventional methods of flotation and are by no means optimised.

"We are incredibly encouraged by the results and have identified multiple opportunities to improve upon the results including a combination of coarsening the grind size, grinding after flotation and utilisation of magnetic separation of the slimes produced from primary crushing."

Metallurgical Testing Overview

The first phase of metallurgical testing commenced in late Q1 2022 and represents the first beneficiation testing conducted on nickel-cobalt sulphide mineralisation from Bardwell. The testwork has demonstrated that the sulphide mineralogy is amenable to conventional flotation techniques. The flotation testing completed to date has only utilised open circuit testing and is only at the early stages in terms of optimisation of the liberation and floating parameters.

A 30kg sample of mineralisation from DDED21-076 was submitted for analysis with the head grade of the analysed sample approximating the overall nickel-cobalt abundance of the entire mineralised interval. The mineralised interval for DDED21-076 is a total of 163.5m at 0.51% Ni and 0.016% Co.

Table 1: Metallurgical Sample Head Grade Analysis

Hole	Ni%	Co%	S%	Fe%	MgO%
DDED21-076	0.53	0.016	0.98	6.00	40.2

Open circuit flotation testwork on the composite sample from DDED21-076 at grind size of 80% passing (P_{80}) 120µm produced a concentrate grade of:

• 11.29% Ni, 0.37% Co, 24% S, 38.2% Fe and 8.2% MgO

Forward Plan

- **Resource Definition Drilling:** Continue resource definition drilling at Bardwell which has currently tested a mineralised strike of ~1.5 km and remains open along strike and at depth.
- Metallurgical Testing: Testing of lower grade domains of mineralisation from Bardwell underway. Geomet model being developed based on increased metallurgical characteristics of mineralisation. Locked cycle testing to be conducted on both DDED21-076 and subsequent mineralisation.
- **Exploration Target**: Quantification of the mineralisation potential of Bardwell is being developed in detail with an exploration target range being evaluated.

About XPS Laboratories

XPS Expert Process Solutions, a Glencore company, is located at the XPS Technology Centre in Falconbridge (Ontario), Canada, and comprises a team of world-class metallurgists, engineers, geoscientists, technicians and technologists with real world experience in process development/optimisation, asset integrity management and mine/process automation.

XPS engages clients with focused, quality project plans that deliver sustainable value to the client's project or operation. XPS's strategy is to provide quality technical expertise for advanced exploration, mining projects and operational support. XPS employs industry best practices and advanced modeling and testing techniques to deliver practical and successful flowsheets, and processing solutions – adding value and reducing risk for our clients and partners.

Edleston Project Overview, Ontario, Canada (100% ASO)

The Edleston Project is located approximately 60km via road to the south of Timmins, Ontario, Canada. The towns of Timmins and Kirkland Lake are located close by and host significant former and current producers, with required services and skilled labour available to support exploration and development of the Project.

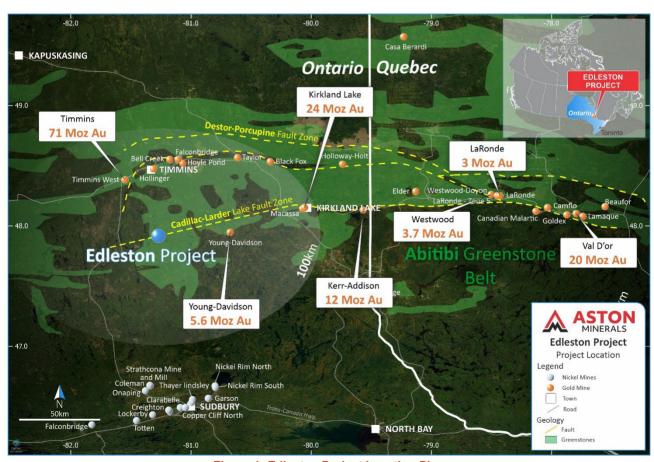


Figure 1: Edleston Project Location Plan

The Project is located within the Abitibi Greenstone Belt of Archean metavolcanic and medisedimentary units that have been steeply folded with axes trending in general east-west orientation.

The Boomerang Target is interpreted to be a Dunite/Peridotite unit which has undergone extensive serpentinisation. This process of is responsible for the reaction of olivine to produce magnetite and brucite, resulting in a strongly reducing environment whereby nickel is released from decomposition of olivine. The nickel which has been released is typically partitioned into low sulphur nickel sulphide minerals. Due to the magnetite association with mineralisation, a 3D inversion model of magnetics has been generated and has been utilised to assist with targeting.

This announcement has been authorised for release by the Board of Aston Minerals Ltd.

Contacts

For more information, please contact:

Dale Ginn Managing Director dale@astonminerals.com Rob Jewson Corporate Director rob@astonminerals.com

Competent Person's Statement

The information in this announcement that relates to the Exploration Results for Edleston Project is based on information compiled and fairly represented by Mr Robert Jewson, who is a Member of the Australian Institute of Geoscientists and Executive Director of Aston Minerals Limited. Mr Jewson has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he has undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Jewson consents to the inclusion in this report of the matters based on this information in the form and context in which it appears. The Company confirms there has been no new information that materially effects the results as they were first reported.

Appendix 1: Diamond Drill Collar Details, Intercept Intervals & Individual Sample Intervals

Hole	Size	Easting	Northing	Elevation	Azimuth	Dip	Final
							Depth (m)
DDED21-076	HQ/NQ	477,782	5,303,527	355	310	-75	350

Hole	From (m)	To (m)	Interval (m)	Ni%	Co%
DDED21-076	67.5	350	282.5	0.43	0.014
DDED21-076	186.5	350	163.5	0.51	0.016
DDED21-076	331.7	350	18.3	0.66	0.014

Appendix 2: JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Comments
	· Nature and quality of sampling (eg cut channels, random	A 30kg composite sample of half NQ diamond core of
	chips, or specific specialised industry standard measurement	mineralisation from DDED21-076 was submitted to XPS
	tools appropriate to the minerals under investigation, such as	Laboratories for metallurgical analysis
	down hole gamma sondes, or handheld XRF instruments,	
	etc.). These examples should not be taken as limiting the	
	broad meaning of sampling.	
	· Include reference to measures taken to ensure sample	Half NQ diamond core was submitted for analysis.
	representivity and the appropriate calibration of any	
Sampling	measurement tools or systems used.	
techniques	· Aspects of the determination of mineralisation that are	The sample intervals were composited in order to obtain a
techniques	Material to the Public Report. In cases where 'industry	representative zone of mineralisation that approximated the head
	standard' work has been done this would be relatively simple	grade of the overall mineralised interval and was submitted to
	(eg 'reverse circulation drilling was used to obtain 1 m	XPS laboratories for grinding and flotation beneficiation studies.
	samples from which 3 kg was pulverised to produce a 30 g	A primary grind to P80 120um was utilised prior to flotation
	charge for fire assay'). In other cases more explanation may	followed by a three stage cleaner with kinetic sampling.
	be required, such as where there is coarse gold that has	
	inherent sampling problems. Unusual commodities or	
	mineralisation types (eg submarine nodules) may warrant	
	disclosure of detailed information.	

Criteria	JORC Code explanation	Comments
Drilling	· Drill type (eg core, reverse circulation, open-hole	Standard tube NQ and HQ Diamond drilling was undertaken.
techniques	hammer, rotary air blast, auger, Bangka, sonic, etc) and	
	details (eg core diameter, triple or standard tube, depth of	
	diamond tails, face-sampling bit or other type, whether core	
	is oriented and if so, by what method, etc).	
Drill sample	· Method of recording and assessing core and chip	Field geologists measure core recoveries for every drill run
recovery	sample recoveries and results assessed.	completed. The core recovered is physically measured by tape
		measure and the length is recorded for every "run". Core recovery
		is calculated as a percentage recovery. Core recovery is logged
		and recorded into the database.
	· Measures taken to maximise sample recovery and	Diamond drilling by nature collects relatively uncontaminated core
	ensure representative nature of the samples.	samples. These are cleaned at the drill site to remove drilling
		fluids and cuttings to present clean core for logging and sampling.
	· Whether a relationship exists between sample recovery	There is no significant loss of material reported in the mineralised
	and grade and whether sample bias may have occurred due	parts of the diamond core to date.
	to preferential loss/gain of fine/coarse material.	
Logging	· Whether core and chip samples have been geologically	Drill holes were logged for lithology, alteration, mineralisation,
	and geotechnically logged to a level of detail to support	structure and weathering by a geologist. Data is then captured in
	appropriate Mineral Resource estimation, mining studies and	a database appropriate for mineral resource estimation.
	metallurgical studies.	
	· Whether logging is qualitative or quantitative in nature.	All cores are photographed in the core tray, with individual
	Core (or costean, channel, etc) photography.	photographs taken of each tray both dry and wet. Logging
		conducted is both qualitative and quantitative.

Criteria	JORC Code explanation	Comments
	· The total length and percentage of the relevant	All drill holes were logged in full.
	intersections logged.	
Sub-sampling	· If core, whether cut or sawn and whether quarter, half or	Diamond drill core was cut in half. Half the core was submitted for
techniques and	all core taken.	metallurgical analysis.
sample	· If non-core, whether riffled, tube sampled, rotary split,	Only diamond core drilling completed.
preparation	etc and whether sampled wet or dry.	
	· For all sample types, the nature, quality and	Sample preparation was completed by XPS Laboratories with a
	appropriateness of the sample preparation technique.	primary grind of P80 passing 120µm.
	· Quality control procedures adopted for all sub-sampling	The type of analysis conducted is aiming to target specific grind
	stages to maximise representivity of samples.	sizes to determine the level of liberation of sulphides.
	· Measures taken to ensure that the sampling is	Triplicate analysis by XPS was conducted to assess the variability
	representative of the in situ material collected, including for	of the mineralisation based on the predicted head grade. The
	instance results for field duplicate/second-half sampling.	results of the individual samples were consistent.
	· Whether sample sizes are appropriate to the grain size	Sample sizes are considered appropriate to the mineralisation
	of the material being sampled.	style and grain size of the material.
Quality of assay	· The nature, quality and appropriateness of the assaying	Four acid digest ICP total digestion was utilised.
data and	and laboratory procedures used and whether the technique	ICP total digestion method involved analysis of a pulp by gently
laboratory tests	is considered partial or total.	heating in a mixture of ultrapure HF/HNO ₃ /HClO ₄ until dry and the
		residue dissolved in dilute ultrapure HNO ₃ .
	· For geophysical tools, spectrometers, handheld XRF	An Olympus Vanta VMR pXRF in Geochem mode was utilised to
	instruments, etc, the parameters used in determining the	assist with identification of nickel sulphide minerals Readings
		were collected over 40 second intervals for all 3 beams. The

Criteria	JORC Code explanation	Comments
	analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	instrument is calibrated according to the manufacturer's specifications and a calibration check is performed daily to confirm the unit is operating within expected parameters as well as a performance test against a certified reference material. The manufacturer's most recent certificate of calibration is dated July 28, 2021 with nickel performance calibrated from OREAS 74a and GBM 398-4 certified reference materials.
	· Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Internal laboratory QAQC samples are utilised by XPS laboratories for the purposes of the metallurgical testing.
Verification of	· The verification of significant intersections by either	Results were reviewed by the chief geologist, managing director
sampling and	independent or alternative company personnel.	and competent person.
assaying	· The use of twinned holes.	None of the current holes being drilled are considered to be twin holes.
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	All data was recorded in field logging sheets, digitsed then imported into a validated database.
	· Discuss any adjustment to assay data.	No adjustments were performed to assay data.
Location of data points	· Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill collar locations were surveyed using a differential GPS.

Criteria	JORC Code explanation	Comments
	· Specification of the grid system used.	All collar locations are reported in NAD83- 17N grid system.
	· Quality and adequacy of topographic control.	Topographic control on collars was derived from a LIDAR survey
		completed across the Project. LIDAR is considered to be industry
		best practice for this stage of exploration.
Data spacing	Data spacing for reporting of Exploration Results.	Drilling at Bardwell has been completed on a nominal 100-200m
and distribution		along strike by 30-100m grid to date.
	· Whether the data spacing and distribution is sufficient to	The spacing of drilling at Bardwell is sufficient and the degree of
	establish the degree of geological and grade continuity	geological and grade continuity is understood to allow for mineral
	appropriate for the Mineral Resource and Ore Reserve	resource estimation to be conducted.
	estimation procedure(s) and classifications applied.	
	· Whether sample compositing has been applied.	Sample compositing has been applied. Results reported are
		length weighted averages.
Orientation of	· Whether the orientation of sampling achieves unbiased	Based on the logging of the drilling and interpretation of the
data in relation	sampling of possible structures and the extent to which this	geology the drilling completed is interpreted to be perpendicular
to geological	is known, considering the deposit type.	to the trend of mineralisation.
structure	· If the relationship between the drilling orientation and the	The drilling intercept reported is downhole. Further drilling is
	orientation of key mineralised structures is considered to	required to confirm the geometry of mineralisation.
	have introduced a sampling bias, this should be assessed	
	and reported if material.	
Sample security	· The measures taken to ensure sample security.	Diamond drill core is transported from site by contractors to a
		secured core processing facility for logging and sampling.

Criteria	JORC Code explanation	Comments
		Samples are subsequently sent by a contractor to the assay
		laboratory.
Audits o	· The results of any audits or reviews of sampling	No audits are documented to have occurred in relation to
reviews	techniques and data.	sampling techniques or data.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral	· Type, reference name/number, location and ownership	The Edleston Project is 100% owned by a wholly owned subsidiary
tenement and	including agreements or material issues with third parties such	of Aston Minerals Ltd.
land tenure	as joint ventures, partnerships, overriding royalties, native title	
status	interests, historical sites, wilderness or national park and	A 2% net smelter return royalty applies across the Project. 1% of
	environmental settings.	the net smelter return royalty can be purchased for \$1,000,000
		across the mining claims and 1% of the net smelter return royalty
		can be purchased for \$1,000,000 across the Leased Claim.
	· The security of the tenure held at the time of reporting	Open file verification has been conducted to confirm licenses are in
	along with any known impediments to obtaining a licence to	full force.
	operate in the area.	
Exploration	· Acknowledgment and appraisal of exploration by other	Exploration reported was completed by 55 North Mining Inc
done by other	parties.	(Formerly SGX Resources Inc.). Activities completed include
parties		magnetic surveys, VLF/IP surveys, extensive diamond drilling.

Criteria	JORC Code ex	cplanat	ion					Commentary
Geology	· Deposit	type,	geological	setting	and	style	of	Regionally, Edleston appears to lie along the potential western
	mineralisation.							extension of the Cadillac-Larder fault zone along which a number of
								major gold deposits are located. Geophysical and geological work
								has demonstrated that the Edleston Zone sits within the north limb
								of the host unit/horizon that stretches over 10 km to the east. This
								unit is broadly folded back toward the south and east immediately
								to the west of the deposit continuing under and near the contact with
								shallow sedimentary cover. The host rock is an altered and sheared
								ultramafic that exhibits extensive silicification and contains quartz-
								carbonate in veins, veinlets and fracture fill.
								A revised geological interpretation based on the information
								obtained from recent drilling and reprocessed magnetics coverages
								was undertaken. Through this process the extent and intense
								magnetic response of the Boomerang Target was recognised.
								Magnetic inversion modelling of the Boomerang Target was
								undertaken to further constrain the geometry and extent of the
								dunite/peridotite complex. It is interpreted that this dunite/peridotite
								body extends for a strike of 5km, is 500 to >1,500m wide and
								extends to depths of well over 500m.
								The exploration model applied to conduct targeting of this body is
								analogous to Dumont and Crawford Nickel-PGE-Cobalt Deposits.

Criteria	JORC Code explanation	Commentary
		Nickel sulphide mineralisation at these deposits was formed through
		the serpentinisation of a dunite unit (rock composed of >90%
		olivine). Through the reaction of olivine with water, extensive
		magnetite is developed hence providing such a strong magnetic
		response and potentially allowing for a direct exploration targeting
		method to be applied. Through this process of serpentinisation
		nickel is liberated from olivine within a strongly reducing
		environment and the liberated nickel is partitioned into low sulphur
		nickel sulphide minerals.
Drill hole	· A summary of all information material to the	Drill hole locations are described in the body of the text, in the
Information	understanding of the exploration results including a tabulation	appendix and on related Figures.
	of the following information for all Material drill holes:	
	o easting and northing of the drill hole collar	
	o elevation or RL (Reduced Level – elevation above sea	
	level in metres) of the drill hole collar	
	o dip and azimuth of the hole	
	o down hole length and interception depth	
	o hole length.	
	· If the exclusion of this information is justified on the basis	All information has been reported. At present no sampling or
	that the information is not Material and this exclusion does not	analysis has been completed.
	detract from the understanding of the report, the Competent	
	Person should clearly explain why this is the case.	

Criteria	JORC Code explanation	Commentary
Data	· In reporting Exploration Results, weighting averaging	Length weighted averages are reported in the highlights and body
aggregation	techniques, maximum and/or minimum grade truncations (eg	of the announcement. A full listing of the individual intervals is
methods	cutting of high grades) and cut-off grades are usually Material	reported in the body of the release above.
	and should be stated.	
	· Where aggregate intercepts incorporate short lengths of	Length weighted averages have been applied where necessary to
	high grade results and longer lengths of low grade results, the	calculate composite intervals. Calculations were performed in excel
	procedure used for such aggregation should be stated and	using the sumproduct function to calculate the length weighted
	some typical examples of such aggregations should be shown	average grades.
	in detail.	
	· The assumptions used for any reporting of metal	No metal equivalence are reported.
	equivalent values should be clearly stated.	
Relationship	· These relationships are particularly important in the	Intervals of alteration and mineralisation reported are apparent
between	reporting of Exploration Results. If the geometry of the	widths. Further drilling is required to understand the geometry of
mineralisation	mineralisation with respect to the drill hole angle is known, its	mineralisation and thus the true width of mineralisation.
widths and	nature should be reported.	
intercept	· If it is not known and only the down hole lengths are	
lengths	reported, there should be a clear statement to this effect (eg	
	'down hole length, true width not known').	
Diagrams	· Appropriate maps and sections (with scales) and	Maps and plans have been included in body of the announcement.
	tabulations of intercepts should be included for any significant	
	discovery being reported These should include, but not be	
	limited to a plan view of drill hole collar locations and	
	appropriate sectional views.	

Criteria	JORC Code explanation	Commentary
Balanced	· Where comprehensive reporting of all Exploration Results	All information has been reported.
reporting	is not practicable, representative reporting of both low and	
	high grades and/or widths should be practiced to avoid	
	misleading reporting of Exploration Results.	
Other	· Other exploration data, if meaningful and material, should	Metallurgical test results are given in the body of the text.
substantive	be reported including (but not limited to): geological	
exploration	observations; geophysical survey results; geochemical survey	
data	results; bulk samples – size and method of treatment;	
	metallurgical test results; bulk density, groundwater,	
	geotechnical and rock characteristics; potential deleterious or	
	contaminating substances.	
Further work	· The nature and scale of planned further work (eg tests for	Further exploratory drilling along the strike length of the Boomerang
	lateral extensions or depth extensions or large-scale step-out	target is proposed to be undertaken. Further details on subsequent
	drilling).	metallurgical testing to be undertaken is included in the body of this
		release.
	· Diagrams clearly highlighting the areas of possible	Maps including the location of samples and prospects are included
	extensions, including the main geological interpretations and	in the body of this release.
	future drilling areas, provided this information is not	
	commercially sensitive.	

