

11 March 2022

Edleston Gold Exploration Update

Key Highlights

Edleston Main: Confirmation and Extension of a substantial Mineralising System

- Multiple significant drilling results returned including:
 - o 3.18m at 29.98g/t Au from 613m (DDED21-044)
 - o 15.58m at 2.57g/t Au from 75.74m (DDED21-015)
 - Including 2.03m at 11.11g/t Au from 79m
 - **148m at 0.55g/t Au** from 80m (DDED21-016)
 - Including 3m at 9.67g/t Au from 192.5m
 - o **3.97m at 5.54g/t Au** from 130.17m (DDED21-017)
 - o **101.62m at 0.66g/t Au** from 102.86m (DDED21-018)
 - Including 14.51m at 2.67g/t Au from 108.45m
 - **80.28m at 0.64g/t Au** from 125.5m (DDED21-033)
 - Including 33.45m at 1.1g/t Au from 140.53m
 - **126.03m at 0.62g/t Au** from 48m (DDED21-035)
 - Including 5.73m at 2.69g/t Au from 120.51m
 - o 82.99m at 0.75g/t Au from 187.51m (DDED21-036)
 - Including 27.04m at 1.64g/t Au
 - o 45.02m at 0.56g/t Au from 358.98m (DDED21-044)
- Mineralisation at Edleston Main extends for a strike length of 700m, average width of 400m and has been tested to a depth below surface of 750m
- Verification of 196 intersections within 92 historical drill holes from 2011 to 2013

Sirola: Rapidly Emerging Discovery

- Multiple significant drill results include:
 - o 1.41m at 14.7 g/t Au from 233.59m (DDED21-043)
 - o 71.49m at 0.61gt Au From 377.49m (DDED21-043)
 - o 81m at 0.69g/t Au from 156.5m (DDED21-046)
 - Including 1.56m at 11.45g/t Au from 166.48m
 - o 2.3m at 8.6g/t Au from 420.2m (DDED21-047)
 - o 11.5m at 0.96g/t Au from 471m (DDED21-038)
- Results of 7 of 16 drill holes completed to date returned

Edleston East: 1.5m at 1,356g/t Au from 362m (DDED21-003), further work required to define extent of mineralisation

Figure 1: Numerical Model of Gold Mineralisation Across Edleston Project

Aston Minerals Limited (**ASX: ASO**, '**Aston Minerals**' or 'the **Company**') is pleased to provide an update on the gold drilling results from Edleston Project, Canada.

Managing Director, Dale Ginn commented "The drilling across Edleston Main has confirmed that there is an extensive body of moderate grade mineralisation and narrower higher-grade domains that justify the estimation of a mineral resource. Once we have received the results for the remaining 12 drill holes we intend to refine the geological model and appoint an independent industry consultancy to estimate a mineral resource.

The Sirola discovery area along strike to the east appears to have four discrete lodes hosting substantial mineralisation. To date we have only received 7 holes out of a total of 15 holes completed. Once we have a better handle on the extent and geometry of mineralisation, we will be evaluating whether systematic resource definition drilling is required.

The substantial intersection of 1.5m at 1,356g/t Au that we encountered Edleston East has proven to be challenging in terms of follow up drilling. The phenomenal grade of this intercept indicates that there is a very substantial amount of localized mineralisation present. The subsequent drilling that we completed in this area did result in numerous low to moderate grade nickel bearing intersections which assisted us in locating the nickel bearing units and discovery at Bardwell that is our current focus. We are aiming to complete follow up drilling on alternative drill orientation with the aim of determining the controls on this high grade domain of mineralisation.

Upon receipt of further results from the gold drilling completed, updates will be provided to the market."

Figure 2: Plan View of Drilling Results

A total of 30 holes for 11,168.6m of drilling has been completed across Edleston Main by Aston. 12 drill holes are currently pending and will be released to market upon receipt of the results. The drilling completed by Aston aimed to infill gaps in the geological model, extend mineralisation along strike/down dip and replicate previous drilling results for QA/QC purposes.

Significant drilling results returned from the drilling of Edleston Main by Aston include:

- **15.58m at 2.57g/t Au** from 75.74m (DDED21-015)
 - Including 2.03m at 11.11g/t Au from 79m
- 148m at 0.55g/t Au from 80m (DDED21-016)
 - o Including 3m at 9.67g/t Au from 192.5m
- 3.97m at 5.54g/t Au from 130.17m (DDED21-017)
- 101.62m at 0.66g/t Au from 102.86m (DDED21-018)
 - o Including 14.51m at 2.67g/t Au from 108.45m
- 80.28m at 0.64g/t Au from 125.5m (DDED21-033)
 - o Including 33.45m at 1.1g/t Au from 140.53m
- **126.03m at 0.62g/t Au** from 48m (DDED21-035)
 - o Including 5.73m at 2.69g/t Au from 120.51m
- 82.99m at 0.75g/t Au from 187.51m (DDED21-036)
 - Including 27.04m at 1.64g/t Au
- 45.02m at 0.56g/t Au from 358.98m (DDED21-044)
- 3.18m at 29.98g/t Au from 613m (DDED21-044)

Drilling conducted by Aston within Edleston Main has confirmed the presence of extensive mineralisation across a considerable width and strike length. From the drilling conducted, it appears that the metasediment units are the bounding features towards mineralisation. To date, a total of 30 holes for 11,168.6m of drilling has been completed across Edleston Main, 12 drill holes completed by Aston still have results pending.

Hole	From	То	Length	Au g/t
SL-11-08	57	65.5	8.5	1.39
	32.95	96.5	63.55	0.91
SL-11-14	Inc. 93	96.5	3.5	7.92
	45.25	158.45	113.2	0.71
SL-11-16	Inc. 93.25	107.45	14.2	2.68
31-11-10	Inc. 48.55	67.42	18.87	0.60
CL 11 17	31.1	81	49.9	0.55
SL-11-17	Inc. 52.25	71	18.75	1.0
CL 11 10	33	48	15	0.86
SL-11-18	83	110.4	27.4	0.56
SL-11-20	23	77.15	54.15	0.53
	Inc.42.8	60	17.2	0.90
CI 11 21	22	71	49	0.79
SL-11-21	Inc. 37	48	11	2.54
SL-11-23	27	31	4	0.62
	63	136	73	0.53
SL-11-26	Inc. 80	99	19	0.80
	165.2	169	3.8	1.92
SL-11-28	73	95	22	0.57
	39	40	1	3.19
SI 11 20	104.1	169	64.9	1.83
31-11-23	Inc. 105	111.85	6.85	13.15
	Inc. 139.1	159	19.9	0.93
	110.9	117.4	6.5	1.00
SL-11-30	140	147	7	0.74
	169	173.3	4.3	1.38
SL-11-32	166.1	170.8	4.7	2.01
	160	220	60	0.75
SL-11-33	Inc. 170.15	191	20.85	1.21
	323	324.53	1.53	4.21
	39.1	41	1.9	2.23
SI -11-34	120.7	166	45.3	0.91
52 11 54	Inc. 142	147.7	5.7	3.25
	279.6	281.35	1.75	3.86
	92	176	84	0.77
SL-11-35	Inc. 175	176	1	9.36
	Inc. 152.45	154.18	1.73	6.11
SI-11-36	90.4	157.9	67.5	1.28
31-11-30	Inc. 100	134	34	2.21

Significant results from verified historical holes include:

Page 5 of 29 $\$ ACN 144 079 667 $\$ Suite 23, 513 Hay Street, Subiaco, WA info@astonminerals.com $\$ www.astonminerals.com $\$ +61 (08) 6143 6740

Hole	From	То	Length	Au g/t
SL-11-37	120.9	158.3	37.4	0.70
SL-11-37	Inc. 149.25	150.3	1.05	7.60
	26.55	101.85	75.3	0.34
SL-11-38	Inc. 66.65	72	5.35	0.98
	75	146.53	71.53	0.67
SL-11-39	Inc. 113.35	121	7.65	1.91
32-11-33	Inc. 84.35	88.35	4	2.28
CL 11 10	34.1	108	73.9	0.42
SL-11-40	Inc. 97.25	99.3	2.05	3.76
	112.1	240.5	128.4	0.63
SL-11-41	Inc. 204	210.6	6.6	7.16
	Inc. 116.7	150.5	33.8	1.20
SL-11-42	78.8	110.9	32.1	0.55
	158	159	1	9.51
SL-11-44	196.58	207.73	11.15	1.08
SL-11-48	51.15	65.2	14.05	0.48
	101	261	160	0.33
SL-12-117	Inc. 164	189.5	25.5	0.54
	Inc. 220	235	15	0.73
SL-12-120	76	90	14	0.47
SL-12-121A	44	59	15	0.46
SL-12-126	261	306	45	0.27
SI-12-127	146	161	15	0.50
SL-12-127	356.5	358	1.5	3.45
SL-12-128	371	373	2	2.02
	207.8	287.32	79.52	3.19
SL-12-129	Inc. 208.3	210.7	2.4	79.49
	Inc. 267	286.35	19.35	2.83
	506	511.5	5.5	1.08
	47	48	1	4.66
	93	99.5	6.5	0.82
SL-12-130	191.5	199.4	7.9	1.15
	331.9	518	186.1	0.58
	Inc. 337	361	24	2.57
	INC. 506.9	518	11.1	0.92
CI 42 422	55 /no. 34 0	107	74	0.51
SL-12-132	Inc. 34.9	44.3 0C	9.4	0.90
CI 12 122	F0	62.2	20	1.02
SL-12-133	86	120.8	24.8	0.07
<u>- 31-12-134</u>	216.25	217 25	1	2 57
SL-12-145A	210.25	217.25	2	2.37 A 25
	100	237.2	2	9.25
SL-12-49b	Inc 222 0	223.17	1 7	2.07
	78 47	224.1	242 58	0.37
SI_12_50	Inc 78 42	86 1	7 68	1 12
36-12-50	Inc. 123	134.6	11.6	5.17
		100	11.0	0.17

Page 6 of 29 \ ACN 144 079 667 \ Suite 23, 513 Hay Street, Subiaco, WA info@astonminerals.com \ **www.astonminerals.com** \ +61 (08) 6143 6740

Hole	From	То	Length	Au g/t
	285	287	2	3.15
SL-12-51	82	91.6	9.6	1.58
	Inc. 85.55	88.6	3.05	4.29
SL-12-51	224	228	4	1.85
	126.8	129.13	2.33	1.64
SL-12-52	183.44	248.3	64.86	0.78
	Inc. 198.4	211.4	13	1.33
	Inc. 235.23	248.3	13.07	2.18
01 40 50	272.55	335.67	63.12	0.79
SL-12-53	Inc. 272.55	312.8	40.25	1.10
01 40 54	163.1	202	38.9	0.52
SL-12-54	Inc. 163.1	168.3	5.2	2.82
SL-12-56	159	183.6	24.6	2.62
	80	91.5	11.5	1.11
CI 13 E0	191.5	342.3	150.8	0.64
3L-12-30	Inc. 208.65	241	32.35	1.38
	Inc. 289.6	342.3	52.7	0.65
SI_12_50	213	300	87	0.51
31-12-39	Inc. 296	300	4	1.73
	100.15	112	11.85	0.49
	201	397	196	0.59
SL-12-60	Inc. 204.65	208.5	3.85	2.49
	Inc. 241	265.35	24.35	1.87
	Inc. 395	397	2	12.89
SL-12-61	114	116	2	2.53
	179.1	235.5	56.4	3.20
SL-12-62	Inc. 209	224.65	15.65	10.55
	385.65	387	1.35	2.10
SL-12-63	208.75	223.75	15	0.47
	110	272.92	162.92	0.81
	Inc. 127	157	30	1.65
SL-12-64	Inc. 185	186	1	5.24
	Inc. 219.95	243	23.05	1.53
	Inc. 268	272.92	4.92	2.25
	334	341	/	0.77
	145	310	1/1	1.02
SL-12-65	Inc. 147	192	45	0.85
	IIIC. 212	230	20	2.30
	111C. 301	149	126	0.70
SI 12 CC	22 Inc 72	140 gg	16	0.70
SL-12-66	226	00	10	2.40
CI 13 CO	230	2/3	۲ ۲	0.44
SL-12-68	370	27/	2	2.20
SL-12-72	378 0	220.2	4	7 70
<u>3L-12-74</u>	273	277	Δ	1 73
SL-12-75	275	202	4 8	0.64
	234	502	0	0.04

Page 7 of 29 \ ACN 144 079 667 \ Suite 23, 513 Hay Street, Subiaco, WA info@astonminerals.com \ **www.astonminerals.com** \ +61 (08) 6143 6740

Hole	From	То	Length	Au g/t
SL-12-76	279	315	36	0.28
SL-12-77	201	204	3	0.62
SL-12-86	111	118	7	32.18
2 1 2 2	323.3	326	2.7	2.60
SL-12-86	485	531.8	46.8	0.41
CL 13.07	275.5	334.5	59	0.56
SL-12-87	Inc. 275.5	282.7	7.2	2.13
SL-12-88	516	551	35	0.40
CL 13 90	290	300	10	1.12
3L-12-09	344.5	375.57	31.07	0.46
	104.85	107.5	2.65	7.14
SI 12 00	121.35	122.78	1.43	10.45
31-12-30	141.72	143	1.28	8.71
	181.5	182.77	1.27	3.48
SL-12-91	215.94	240.25	24.31	0.52
	37	39.2	2.2	3.44
	72.8	146.35	73.55	0.82
SL-13-146	Inc. 78.25	<i>85.9</i>	7.65	2.42
	Inc. 97	112.6	15.6	1.45
	Inc. 141.4	146.35	4.95	1.34
	28.7	30.1	1.4	5.00
SL-13-147	113	166.5	53.5	0.84
	Inc. 122	140	18	1.75
	63	105	42	0.93
SL-13-148	Inc. 79.5	87	7.5	2.21
	Inc. 99.6	102.4	2.8	2.62
SI -13-149	282.7	310	27.3	0.47
	Inc. 291.6	293.6	2	2.72
SL-13-150	102	121	19	0.58
	226	228	2	10.90
SL-13-151	57.65	63	5.35	1.79
	88	92	4	2.04
SL-13-152	320	342.7	22.7	1.09
	41.9	50	8.1	1.45
SL-13-153	127	154	27	1.23
	Inc. 127	130	3	5.41
	249	253	4	8.25
SL-13-154	110	135	25	0.77
SL-13-156	42.62	46.5	3.88	0.88
SL-13-158	298.27	299.65	1.38	1/.11
SL-13-159	50	97	4/	0.03
	INC. 08	8U	12	1.19
SL-13-160	/6	127.5	51.5	0.97
	INC. 76	88.25	12.25	2.02
	83	149	00	0.8
SL-13-161	INC. 95.65	97.55	1.9	9.09
	INC. 117	149	32	0.95

Page 8 of 29 \ ACN 144 079 667 \ Suite 23, 513 Hay Street, Subiaco, WA info@astonminerals.com \ **www.astonminerals.com** \ +61 (08) 6143 6740

Hole	From	То	Length	Au g/t
	65	176	111	0.96
SL-13-162	Inc. 64	66	2	17.78
	Inc. 163	166	3	20.34
SL-13-163	115.4	116.8	1.4	21.73
SL-13-163	197	220.5	23.5	0.32
	100	167.4	67.4	0.84
SI 12 162A	Inc. 100	107	7	1.33
SL-13-163A	Inc. 140	144.7	4.7	7.03
	207.6	218.9	11.3	0.71
SL-13-164	190	224	34	0.91
SL-13-165	370.4	382.4	12	1.52
SI 12 100	209.2	254	44.8	0.70
SL-13-100	276	295	19	0.91
SL-13-167	138.95	155	16.05	0.64
SL-13-169	285.3	341	55.7	0.87

The mineralisation at Edleston Main extends for a strike length of 700m, average width of 400m and has been tested to a depth below surface of 750m. Mineral resource estimation will be completed upon receipt of the holes which are presently pending.

Sirola Drilling

Figure 5: Sirola Cross Section Looking East

The Sirola Prospect is located 800m to the east of Edleston Main and previously had only been drilled to depths of up to 200m. Initially, a north-south orientated section of drilling was completed across the prospect to get an understanding of the association between the IP chargeability anomaly and the mineralisation.

Four discrete lodes of mineralisation were identified which are interpreted as trending in an eastwest orientation.

Significant drilling results returned from drilling of the Sirola Prospect by Aston include:

- **11.5m at 0.96g/t Au** from 471m (DDED21-038)
- 1.41m at 14.7 g/t Au from 233.59m (DDED21-043)
- 71.49m at 0.61gt Au From 377.49m (DDED21-043)
- 81m at 0.69g/t Au from 156.5m (DDED21-046)
 - Including 1.56m at 11.45g/t Au from 166.48m
- 2.3m at 8.6g/t Au from 420.2m (DDED21-047)

Edleston East Drilling

Drilling at Edleston East was focused around a zone located between Edleston Main and Sirola. Through the process of evaluation of previous exploration results, substantial intercepts were uncovered which appeared to correlate with the early drilling success of DDED21-003 which reported 1.5m at 1,356g/t Au from 362m. Subsequent drilling around this prospect has failed to replicate the historical gold exploration results, however, extensive nickel mineralisation was encountered that aided in our locating of the current nickel targets and discovery at Bardwell.

Figure 6: Interval of coarse visible gold veinlets at 362m (DDED21-003)

Further drilling is planned proximal to DDED21-003 on alternative drill orientations based on our updated geological understanding on the controls on mineralisation with the aim of determining the extent of this high grade domain of mineralisation.

Results returned from Edleston East include:

- **1.5m at 1356.11g/t Au** from 361.5m (DDED21-003)
- 1.0m at 3.44g/t Au from 444m (DDED21-001)
- **1.5m at 3.85gt Au** From 379.5m (DDED21-002)

Nickel results from Edleston East holes include:

Hole ID	From	То	Length	Ni (ppm)
DDED21-001	63	178	115	2112
DDED21-001	201.53	368.5	166.97	2063
DDED21-002	328.5	441	112.5	2061
DDED21-003	230.77	310.5	79.73	1759
DDED21-004	293.66	385	91.34	1860
DDED21-016	189.85	231	41.15	1158
DDED21-014	42.6	110.59	67.99	1821
DDED21-014	206.95	325.37	118.42	2477
DDED21-018	173.58	261.96	88.38	1471
DDED21-044	112.5	215.5	103	1564
DDED21-044	654.33	684.99	30.66	2586
DDED21-044	710	734.41	24.41	3602

Edleston Project Overview, Ontario, Canada (100% ASO)

The Edleston Project is located approximately 60km via road to the south of Timmins, Ontario, Canada. The towns of Timmins and Kirkland Lake are located close by and host significant former and current producers, with required services and skilled labour available to support exploration and development of the Project.

Figure 7: Edleston Project Location Plan

The Project is located within the Abitibi Greenstone Belt of Archean metavolcanic and medisedimentary units that have been steeply folded with axes trending in general east-west orientation.

The Boomerang Target is interpreted to be a Dunite/Peridotite unit which has undergone extensive serpentinisation. This process of is responsible for the reaction of olivine to produce magnetite and brucite, resulting in a strongly reducing environment whereby nickel is released from decomposition of olivine. The nickel which has been released is typically partitioned into low sulphur nickel sulphide minerals. Due to the magnetite association with mineralisation, a 3D inversion model of magnetics has been generated and has been utilised to assist with targeting.

This announcement has been authorised for release by the Board of Aston Minerals Limited

Contacts

For more information, please contact:

Dale Ginn Managing Director dale@astonminerals.com Rob Jewson Corporate Director rob@astonminerals.com

Competent Person's Statement

The information in this announcement that relates to the Exploration Results for Edleston Project is based on information compiled and fairly represented by Mr Robert Jewson, who is a Member of the Australian Institute of Geoscientists and Executive Director of Aston Minerals Limited. Mr Jewson has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he has undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Jewson consents to the inclusion in this report of the matters based on this information in the form and context in which it appears. The Company confirms there has been no new information that materially effects the results as they were first reported.

Appendix 1: Diamond Drill Collar Details, Intercept Intervals

Hole	Easting	Northing	Elevation	Depth	Azimuth	Dip	Prospect	Results Returned
DDED21-001	477,735	5,307,184	362.6	450	0	-50	Edleston East	Yes
DDED21-002	477,730	5,307,133	362.7	441	0	-50	Edleston East	Yes
DDED21-003	477,894	5,307,184	365.3	429.24	15	-50	Edleston East	Yes
DDED21-004	477,921	5,307,139	365.6	429	15	-50	Edleston East	Yes
DDED21-005	477,742	5,307,236	362.3	363	0	-50	Edleston East	Yes
DDED21-006	477,941	5,307,221	365.7	492.03	15	-50	Edleston East	Yes
DDED21-007	477,963	5,307,261	366.7	279	15	-50	Edleston East	Yes
DDED21-008	477,971	5,307,309	364.2	243	15	-50	Edleston East	Yes
DDED21-009	478,036	5,307,164	364.6	384.04	15	-50	Edleston East	Yes
DDED21-010	477,884	5,307,186	364.9	546	10	-50	Edleston East	Yes
DDED21-011	477,899	5,307,202	365.6	387.06	10	-52	Edleston East	Yes
DDED21-012	477,895	5,307,183	365.3	459	10	-65	Edleston East	Yes
DDED21-013	477,909	5,307,240	364.9	378.5	0	-50	Edleston East	Yes
DDED21-014	477,737	5,307,231	361.8	753	320	-50	Edleston East	Yes
DDED21-015	477,382	5,307,398	357.8	564.05	65	-45	Edleston	Yes
DDED21-016	477,134	5,307,585	360.4	231	0	-63	Edleston	Yes
DDED21-017	477,150	5,307,605	359.0	258	0	-55	Edleston	Yes
DDED21-018	477,150	5,307,577	360.7	303	0	-59	Edleston	Yes
DDED21-019	477,474	5,307,863	359.2	369	0	-50	Edleston	Yes
DDED21-020	477,002	5,307,588	360.4	228.15	0	-50	Edleston	Yes
DDED21-021	477,003	5,307,553	359.2	288.01	0	-75	Edleston	Yes
DDED21-022	477,475	5,307,954	359.6	292.51	0	-50	Edleston	Yes
DDED21-023	476,906	5,307,555	360.2	369	0	-50	Edleston	Yes
DDED21-024	477,371	5,307,942	359.6	249	0	-50	Edleston	Yes
DDED21-025	476,906	5,307,555	360.3	324	0	-70	Edleston	No
DDED21-026	477,281	5,307,886	359.3	309	0	-50	Edleston	No
DDED21-027	476,904	5,307,615	362.6	249	0	-50	Edleston	No
DDED21-028	477,275	5,307,948	361.1	291	0	-50	Edleston	No
DDED21-029	477,275	5,308,005	360.1	183	0	-50	Edleston	Yes
DDED21-030	477,172	5,307,949	359.8	231	0	-50	Edleston	No
DDED21-032	477,172	5,308,005	359.6	159	0	-50	Edleston	Yes
DDED21-033	477,200	5,307,538	359.7	399	0	-62	Edleston	Yes
DDED21-035	477,100	5,307,631	358.6	231	0	-50	Edleston	Yes
DDED21-036	477,350	5,307,432	360.4	357.05	0	-53	Edleston	Yes
DDED21-038	478,519	5,307,170	368.2	6/8.16	0	-55	Sirola	Yes
DDED21-040	478,524	5,307,166	368.2	720	0	-75	Sirola	Yes
DDED21-041	477,101	5,307,690	360.0	324	0	-50	Edleston	Yes
DDED21-042	477,447	5,307,427	361.0	642.3	0	-54	Edieston	res
DDED21-043	478,518	5,306,975	357.1	591.58	360	-/0	Sirola	res
DDED21-044	477,447	5,307,427	361.0	912.23	0	-50	Edleston	res
DDED21-045	477,498	5,307,552	359.7	366.3	0	-55	Edieston	
DDED21-046	478,528	5,307,314	369.6	370	0	-55	Sirola	Yes

Hole	Easting	Northing	Elevation	Depth	Azimuth	Dip	Prospect	Results Returned
DDED21-047	478,522	5,307,414	368.4	492.3	330	-50	Sirola	Yes
DDED21-048	476,909	5,307,611	361.5	429	330	-50	Edleston	No
DDED21-049	476,918	5,307,542	358.0	468	330	-50	Edleston	No
DDED21-050	478,521	5,307,163	368.2	747	0	-70	Sirola	No
DDED21-051	477,124	5,307,527	359.7	537	330	-50	Edleston	No
DDED21-052	478,518	5,306,968	356.4	750.01	330	-50	Sirola	No
DDED21-053	477,079	5,307,521	359.3	495	0	-70	Edleston	No
DDED21-054	476,945	5,307,760	358.4	561	0	-50	Edleston	No
DDED21-055	476,944	5,307,760	358.3	549	320	-50	Edleston	No
DDED21-056	478,351	5,307,493	365.0	1173	180	-50	Sirola	No
DDED21-058	478,911	5,306,708	367.0	741	270	-45	Sirola	No
DDED21-062	478,756	5,307,247	360.0	606	270	-50	Sirola	No
DDED21-064	478,756	5,307,247	360.0	531	250	-50	Sirola	No
DDED21-066	478,763	5,307,245	403.0	747	10	-50	Sirola	No
DDED21-068	478,611	5,306,916	363.4	711	25	-50	Sirola	Yes
DDED21-071	478,611	5,306,916	363.4	657	25	-70	Sirola	No
DDED21-074	478,734	5,306,987	367.4	652.5	25	-50	Sirola	No
DDED21-077	478,805	5,306,864	368.6	500	25	-50	Sirola	No

Hole ID	From	То	Length	Au g/t
DDED21-001	444	445	1	3.44
DDED21-002	379.5	381	1.5	3.85
DDED21-003	361.5	363	1.5	1356.11
DDED21-004		No	o Significant Interc	epts
DDED21-005		No	o Significant Interc	cepts
DDED21-006	110	112.97	2.97	0.62
DDED21-007		No	o Significant Interc	epts
DDED21-008		No	o Significant Interc	epts
DDED21-009		No	o Significant Interc	epts
DDED21-010		No	o Significant Interc	epts
DDED21-011		No	o Significant Interc	epts
DDED21-012		No	o Significant Interc	epts
DDED21-013	177.51	178.74	1.23	2.20
DDED21-014	730	746.6	16.6	0.66
	75.74	91.32	15.58	2.57
DDED21-015	Inc. 79	81.03	2.03	11.11
	110.5	112.5	2	3.51
	80	228	148	0.55
DDED21-016	Inc. 192.5	195.5	3	9.67
	Inc. 167.5	169	1.5	8.30
	21.76	221.91	200.15	0.37
DDED21-017	Inc. 130.17	134.14	3.97	5.54
	Inc. 182.41	197.5	15.09	0.53
DDED21-018	102.86	204.48	101.62	0.66

Page 15 of 29 \ ACN 144 079 667 \ Suite 23, 513 Hay Street, Subiaco, WA info@astonminerals.com \ **www.astonminerals.com** \ +61 (08) 6143 6740

Hole ID	From	То	Length	Au g/t
	Inc. 108.45	122.96	14.51	2.67
	Inc. 178	204.48	26.48	0.54
DDED21-019		No	o Significant Interc	epts
DDED21-020		No	o Significant Interc	epts
DDED21-021		No	o Significant Interc	epts
DDED21-022		No	o Significant Interc	epts
DDED21-023		No	o Significant Interc	epts
DDED21-024		No	o Significant Interc	epts
DDED21-025			Assays Pending	
DDED21-026			Assays Pending	
DDED21-027			Assays Pending	
DDED21-028			Assays Pending	
DDED21-029		No	o Significant Interc	epts
DDED21-030			Assays Pending	
DDED21-032		No	o Significant Interc	epts
	38.4	40	1.6	3.43
DDED21-033	125.5	205.78	80.28	0.64
	Inc. 140.53	173.98	33.45	1.10
	48	174.03	126.03	0.62
DDED21-035	Inc. 62.97	74	11.03	1.14
	Inc. 120.51	126.24	5.73	2.69
DDED21-036	187.51	270.5	82.99	0.75
	Inc. 242	269.04	27.04	1.64
DDED21-038	471	482.5	11.5	0.96
	Inc. 472.42	473.9	1.48	5.11
DDED21-041		No	o Significant Interc	epts
	233.59	235	1.41	14.70
	377.49	448.98	71.49	0.61
DDED21-043	Inc. 377.49	379.53	2.04	4.84
	Inc. 436.05	447.90	11.85	1.69
	358.98	461	102.02	0.41
DDED21-044	Inc. 402.5	405	2.5	2.36
	613	616.18	3.18	29.98
DDED21-045			Assays Pending	
	156.5	237.56	81	0.69
DDED21-046	166.48	168.04	1.56	11.45
DDED21-047	420.2	422.5	2.3	8.6
DDED21-048			Assays Pending	
DDED21-049			Assays Pending	
DDED21-050			Assays Pending	
DDED21-051			Assays Pending	
DDED21-052			Assays Pending	
DDED21-053			Assavs Pending	
			Assays i chung	
DDED21-054			Assays Pending	

Hole ID	From	То	Length	Au g/t
DDED21-056			Assays Pending	
DDED21-058			Assays Pending	
DDED21-062			Assays Pending	
DDED21-064	402.7	404.7	2	5.10
DDED21-066			Assays Pending	
DDED21-068	52	53	1	7.35
	318.3	319.5	1.2	13.50
DDED21-071			Assays Pending	
DDED21-074			Assays Pending	
DDED21-077			Assays Pending	

ASX ANNOUNCEMENT

Appendix 2: JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Comments
Sampling	• Nature and quality of sampling (eg cut channels, random chips,	Half NQ/HQ diamond drill core was submitted for analysis.
techniques	or specific specialised industry standard measurement tools	
	appropriate to the minerals under investigation, such as down hole	
	gamma sondes, or handheld XRF instruments, etc.). These examples	
	should not be taken as limiting the broad meaning of sampling.	
	· Include reference to measures taken to ensure sample	Core was cut into two equal halves with one submitted for analysis.
	representivity and the appropriate calibration of any measurement	
	tools or systems used.	
	· Aspects of the determination of mineralisation that are Material	Sample intervals was based on geological observations. Minimum
	to the Public Report. In cases where 'industry standard' work has	core width sampled was 0.3m and maximum 1.5m. Samples were
	been done this would be relatively simple (eg 'reverse circulation	submitted to both Activation Laboratories Timmins and ALS
	drilling was used to obtain 1 m samples from which 3 kg was	Laboratories Vancouver.
	pulverised to produce a 30 g charge for fire assay'). In other cases	
	more explanation may be required, such as where there is coarse	
	gold that has inherent sampling problems. Unusual commodities or	

Page 18 of 29 / ACN 144 079 667 / Suite 23, 513 Hay Street, Subiaco, WA info@astonminerals.com / www.astonminerals.com / +61 (08) 6143 6740

Criteria	JORC Code explanation	Comments
	mineralisation types (eg submarine nodules) may warrant disclosure	
	of detailed information.	
Drilling	· Drill type (eg core, reverse circulation, open-hole hammer,	Standard tube NQ and HQ Diamond drilling was undertaken.
techniques	rotary air blast, auger, Bangka, sonic, etc) and details (eg core	
	diameter, triple or standard tube, depth of diamond tails, face-	
	sampling bit or other type, whether core is oriented and if so, by	
	what method, etc).	
Drill sample	· Method of recording and assessing core and chip sample	Field geologists measure core recoveries for every drill run
recovery	recoveries and results assessed.	completed. The core recovered is physically measured by tape
		measure and the length is recorded for every "run". Core recovery is
		calculated as a percentage recovery. Core recovery is logged and
		recorded into the database.
	· Measures taken to maximise sample recovery and ensure	Diamond drilling by nature collects relatively uncontaminated core
	representative nature of the samples.	samples. These are cleaned at the drill site to remove drilling fluids
		and cuttings to present clean core for logging and sampling.
	· Whether a relationship exists between sample recovery and	There is no significant loss of material reported in the mineralised
	grade and whether sample bias may have occurred due to	parts of the diamond core to date.
	preferential loss/gain of fine/coarse material.	
Logging	· Whether core and chip samples have been geologically and	Drill holes were logged for lithology, alteration, mineralisation,
	geotechnically logged to a level of detail to support appropriate	structure and weathering by a geologist. Data is then captured in a
		database appropriate for mineral resource estimation.

Page 19 of 29 \ ACN 144 079 667 \ Suite 23, 513 Hay Street, Subiaco, WA info@astonminerals.com \ **www.astonminerals.com** \ +61 (08) 6143 6740

Criteria	JORC Code explanation	Comments
	Mineral Resource estimation, mining studies and metallurgical	
	studies.	
	· Whether logging is qualitative or quantitative in nature. Core (or	All cores are photographed in the core tray, with individual
	costean, channel, etc) photography.	photographs taken of each tray both dry and wet. Logging conducted
		is both qualitative and quantitative.
	· The total length and percentage of the relevant intersections	All drill holes were logged in full.
	logged.	
Sub-sampling	· If core, whether cut or sawn and whether quarter, half or all core	Diamond drill core was cut in half. Half the core was submitted for
techniques	taken.	analysis and the remaining half was stored securely for future
and sample		reference and potentially further analysis if ever required.
preparation	· If non-core, whether riffled, tube sampled, rotary split, etc and	Only diamond core drilling completed.
	whether sampled wet or dry.	
	· For all sample types, the nature, quality and appropriateness of	Sample preparation by ALS Laboratories in Vancouver used their
	the sample preparation technique.	standard preparation method. Samples were crushed to 80%
		passing 2mm, riffle split and pulverized to 95% passing <75µm.
		Sample preparation by Activation Laboratories in Timmins used their
		standard preparation method. Samples were crushed to 80%
		passing 2mm, riffle split and pulverized to 95% passing 105 μ m.

Page 20 of 29 \ ACN 144 079 667 \ Suite 23, 513 Hay Street, Subiaco, WA info@astonminerals.com \ **www.astonminerals.com** \ +61 (08) 6143 6740

Criteria	JORC Code explanation	Comments
	Quality control procedures adopted for all sub-sampling stages	Standard preparation procedure inclusive of internal laboratory
	to maximise representivity of samples.	internal crushing and pulverizing tests were utilised by ALS
		Laboratories and Activation Laboratories Timmins.
	· Measures taken to ensure that the sampling is representative of	Field duplicate samples were taken at the rate of 1:25 samples.
	the in situ material collected, including for instance results for field	Standard reference materials and blanks were similarly inserted at
	duplicate/second-half sampling.	the rate of 1:25 before and after predicted high grade intervals
		multiple blanks were inserted to ensure that there was no cross
		sample contamination. QAQC verified that the blank material
		reported below detection and thus no cross contamination between
		samples.
	· Whether sample sizes are appropriate to the grain size of the	Sample sizes are considered appropriate to the mineralisation style
	material being sampled.	and grain size of the material.
Quality of	· The nature, quality and appropriateness of the assaying and	Samples were routinely submitted for gold assay by fire assay and
assay data	laboratory procedures used and whether the technique is	ICP (atomic absorption) of a 50g pulverized sample. If gold grains of
and	considered partial or total.	a size larger than the grind size are present, the method can be
laboratory		considered partial digestion.
tests		
		Samples with logged visible gold or reporting over 10g/t Au were
		analysed by fire assay metallic screen. A representative 500g split is
		sieved at 100 mesh with assays with assays performed on the entire
		>100 mesh and 2 splits of the -100 mesh fraction. A final assay is
		calculated based on the weight of each fraction.

Page 21 of 29 \ ACN 144 079 667 \ Suite 23, 513 Hay Street, Subiaco, WA info@astonminerals.com \ **www.astonminerals.com** \ +61 (08) 6143 6740

Criteria	JORC Code explanation	Comments
	· For geophysical tools, spectrometers, handheld XRF	Pole-dipole Array IP geophysics was conducted by SGX Resources
	instruments, etc, the parameters used in determining the analysis	Inc, the former operator of the Project. The surveys were
	including instrument make and model, reading times, calibrations	implemented and interpreted by R J Meikle and Associates in 2010-
	factors applied and their derivation, etc.	12. The survey was completed in a north south orientation at a
		spacing of 100m along a baseline of 2.2km. The survey lines varied
		in length between 800 and 3000m.
		The dipole 'a' spacing was 25m and increasing separations of n=1,
		n=2, n=3, n=4 and n=5, the dipole spacing was measured in order to
		map the response at depth.
		IP Survey equipment consisted of a Pheonix IPT-1 3000w transmitter
		operating in the time domain powered by a 2kw motor generator.
		The chargeability (measured in mV/V) between the transmitted
		current and the received voltage is recorded by a Iris Elrec IP \ensuremath{Pro}
		receiver which records the chargeability and the apparent resistivity
		for each set of dipoles.
	· Nature of quality control procedures adopted (eg standards,	Standard reference materials and blanks were inserted routinely at
	blanks, duplicates, external laboratory checks) and whether	the rate of 1:25 samples.
	acceptable levels of accuracy (ie lack of bias) and precision have	
	been established.	

Criteria	JORC Code explanation	Comments
Verification	· The verification of significant intersections by either	Results were reviewed by the chief geologist, managing director and
of sampling	independent or alternative company personnel.	competent person.
and assaying	• The use of twinned holes.	None of the current holes being drilled are considered to be twin
		holes.
	· Documentation of primary data, data entry procedures, data	All data was recorded in field logging sheets, digitsed then imported
	verification, data storage (physical and electronic) protocols.	into a validated database.
	• Discuss any adjustment to assay data.	No adjustments were performed to assay data.
Location of	Accuracy and quality of surveys used to locate drill holes (collar	Drill collar locations were surveyed using a differential GPS.
data points	and down-hole surveys), trenches, mine workings and other	
	locations used in Mineral Resource estimation.	
	· Specification of the grid system used.	All collar locations are reported in NAD83- 17N grid system.
	• Quality and adequacy of topographic control.	Topographic control on collars was derived from a LIDAR survey
		completed across the Project. LIDAR is considered to be industry
		best practice for this stage of exploration.
Data spacing	• Data spacing for reporting of Exploration Results.	Diamond drill holes are drilled selectively directly targeting
and		mineralisation based on regional orientations known along strike.
distribution	· Whether the data spacing and distribution is sufficient to	The spacing across Edleston Main is sufficient to establish geological
	establish the degree of geological and grade continuity appropriate	and grade continuity appropriate for estimation of a Mineral
	for the Mineral Resource and Ore Reserve estimation procedure(s)	Resource. Upon receipt of remaining results from Edleston Main,
	and classifications applied.	Mineral Resource Estimation will be conducted.

Page 23 of 29 \ ACN 144 079 667 \ Suite 23, 513 Hay Street, Subiaco, WA info@astonminerals.com \ **www.astonminerals.com** \ +61 (08) 6143 6740

Criteria	JORC Code explanation	Comments
		The remaining prospects drilled by the Company are on too broad of
		a spacing to define a mineral resource at present.
	• Whether sample compositing has been applied	Sample compositing has been applied. Results reported are length
	Whether sumple compositing has been applied.	weighted averages
		weighted averages.
Orientation	· Whether the orientation of sampling achieves unbiased	Based on the logging of the drilling and interpretation of the geology
of data in	sampling of possible structures and the extent to which this is	the drilling completed is interpreted to be perpendicular to the trend
relation to	known, considering the deposit type.	of mineralisation.
geological	\cdot If the relationship between the drilling orientation and the	The drilling intercept reported is downhole. Further drilling is
structure	orientation of key mineralised structures is considered to have	required to confirm the geometry of mineralisation.
	introduced a sampling bias, this should be assessed and reported if	
	material.	
Sample	• The measures taken to ensure sample security.	Diamond drill core is transported from site by contractors to a
security		secured core processing facility for logging and sampling. Samples
		are subsequently sent by a contractor to the assay laboratory.
Audits or	· The results of any audits or reviews of sampling techniques and	No audits are documented to have occurred in relation to sampling
reviews	data.	techniques or data.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral	• Type, reference name/number, location and ownership including	The Edleston Project is 100% owned by a wholly owned subsidiary
tenement and	agreements or material issues with third parties such as joint	of Aston Minerals Ltd.

ASX: ASO

Page 24 of 29 \ ACN 144 079 667 \ Suite 23, 513 Hay Street, Subiaco, WA info@astonminerals.com \ **www.astonminerals.com** \ +61 (08) 6143 6740

Criteria	JORC Code explanation	Commentary
land tenure	ventures, partnerships, overriding royalties, native title interests,	
status	historical sites, wilderness or national park and environmental	A 2% net smelter return royalty applies across the Project. 1% of the
	settings.	net smelter return royalty can be purchased for \$1,000,000 across
		the mining claims and 1% of the net smelter return royalty can be
		purchased for \$1,000,000 across the Leased Claim.
	• The security of the tenure held at the time of reporting along	Open file verification has been conducted to confirm licenses are in
	with any known impediments to obtaining a licence to operate in the	full force.
	area.	
Exploration	• Acknowledgment and appraisal of exploration by other parties.	Exploration reported was completed by 55 North Mining Inc
done by other		(Formerly SGX Resources Inc.). Activities completed include
parties		magnetic surveys, VLF/IP surveys, extensive diamond drilling.
Geology	• Deposit type, geological setting and style of mineralisation.	Regionally, Edleston appears to lie along the potential western
		extension of the Cadillac-Larder fault zone along which a number of
		major gold deposits are located. Geophysical and geological work
		has demonstrated that the Edleston Zone sits within the north limb
		of the host unit/horizon that stretches over 10 km to the east. This
		unit is broadly folded back toward the south and east immediately
		to the west of the deposit continuing under and near the contact
		with shallow sedimentary cover. The host rock is an altered and
		sheared ultramafic that exhibits extensive silicification and contains
		quartz-carbonate in veins, veinlets and fracture fill.

Page 25 of 29 \ ACN 144 079 667 \ Suite 23, 513 Hay Street, Subiaco, WA info@astonminerals.com \ **www.astonminerals.com** \ +61 (08) 6143 6740

Criteria	JORC Code explanation	Commentary
		A revised geological interpretation based on the information
		obtained from recent drilling and reprocessed magnetics coverages
		was undertaken. Through this process the extent and intense
		magnetic response of the Boomerang Target was recognised.
		Magnetic inversion modelling of the Boomerang Target was
		undertaken to further constrain the geometry and extent of the
		dunite/peridotite complex. It is interpreted that this
		dunite/peridotite body extends for a strike of 5km, is 500 to
		>1,500m wide and extends to depths of well over 500m.
		The exploration model applied to conduct targeting of this body is
		analogous to Dumont and Crawford Nickel-PGE-Cobalt Deposits.
		Nickel sulphide mineralisation at these deposits was formed
		through the serpentinisation of a dunite unit (rock composed of
		>90% olivine). Through the reaction of olivine with water, extensive
		magnetite is developed hence providing such a strong magnetic
		response and potentially allowing for a direct exploration targeting
		method to be applied. Through this process of serpentinisation
		nickel is liberated from olivine within a strongly reducing
		environment and the liberated nickel is partitioned into low sulphur
		nickel sulphide minerals.

Criteria	JORC Code explanation	Commentary
Drill hole	· A summary of all information material to the understanding of	Drill hole locations are described in the body of the text, in the
Information	the exploration results including a tabulation of the following	appendix and on related Figures.
	information for all Material drill holes:	
	o easting and northing of the drill hole collar	
	o elevation or RL (Reduced Level – elevation above sea level in	
	metres) of the drill hole collar	
	o dip and azimuth of the hole	
	o down hole length and interception depth	
	o hole length.	
	· If the exclusion of this information is justified on the basis that	All information has been reported. At present no sampling or
	the information is not Material and this exclusion does not detract	analysis has been completed.
	from the understanding of the report, the Competent Person should	
	clearly explain why this is the case.	
Data	· In reporting Exploration Results, weighting averaging	Length weighted averages are reported in the highlights and body
aggregation	techniques, maximum and/or minimum grade truncations (eg	of the announcement. A full listing of the individual intervals is
methods	cutting of high grades) and cut-off grades are usually Material and	reported in the body of the release above.
	should be stated.	
	• Where aggregate intercepts incorporate short lengths of high	Length weighted averages have been applied where necessary to
	grade results and longer lengths of low grade results, the procedure	calculate composite intervals. Calculations were performed in excel
	used for such aggregation should be stated and some typical	using the sumproduct function to calculate the length weighted
	examples of such aggregations should be shown in detail.	average grades.

Criteria	JORC Code explanation	Commentary
	• The assumptions used for any reporting of metal equivalent	No metal equivalence are reported.
	values should be clearly stated.	
Relationship	• These relationships are particularly important in the reporting of	Intervals of alteration and mineralisation reported are apparent
between	Exploration Results. \cdot If the geometry of the mineralisation with	widths. Further drilling is required to understand the geometry of
mineralisation	respect to the drill hole angle is known, its nature should be reported.	mineralisation and thus the true width of mineralisation.
widths and	• If it is not known and only the down hole lengths are reported,	
intercept	there should be a clear statement to this effect (eg 'down hole	
lengths	length, true width not known').	
Diagrams	• Appropriate maps and sections (with scales) and tabulations of	Maps and plans have been included in body of the announcement.
	intercepts should be included for any significant discovery being	
	reported These should include, but not be limited to a plan view of	
	drill hole collar locations and appropriate sectional views.	
Balanced	• Where comprehensive reporting of all Exploration Results is not	All information has been reported.
reporting	practicable, representative reporting of both low and high grades	
	and/or widths should be practiced to avoid misleading reporting of	
	Exploration Results.	
Other	• Other exploration data, if meaningful and material, should be	No other exploration data is considered meaningful and material to
substantive	reported including (but not limited to): geological observations;	this announcement.
exploration	geophysical survey results; geochemical survey results; bulk samples	
data	- size and method of treatment; metallurgical test results; bulk	
	density, groundwater, geotechnical and rock characteristics;	
	potential deleterious or contaminating substances.	

Page 28 of 29 \ ACN 144 079 667 \ Suite 23, 513 Hay Street, Subiaco, WA info@astonminerals.com \ **www.astonminerals.com** \ +61 (08) 6143 6740

Criteria	JORC Code explanation	Commentary
Further work	• The nature and scale of planned further work (eg tests for lateral	Upon receipt of remainder of drill results from gold drilling program,
	extensions or depth extensions or large-scale step-out drilling).	further exploration will be planned.
	• Diagrams clearly highlighting the areas of possible extensions,	Maps including the location of samples and prospects are included
	including the main geological interpretations and future drilling	in the body of this release.
	areas, provided this information is not commercially sensitive.	

