

28 September 2022

Resource definition drilling continues to expand scale of Ni-Co Sulphide mineralisation at Bardwell

Key Highlights

- Multiple significant intercepts at Bardwell Prospect have extended the drill tested strike to
 2,000m and remaining open along strike and at depth. Intercepts include:
 - DDED22-104 intersected 149.5m at 0.36% Ni and 0.012% Co from 294m including 18m at 0.58% Ni and 0.011% Co and 17m at 0.46% Ni and 0.015% Co
 - DDED22-096 intersected 213.35m at 0.31% Ni and 0.012% Co from 243.5m including
 58m at 0.4% Ni and 0.015% Co
 - DDED22-088 intersected 188.08m at 0.35% Ni and 0.012% Co from 174.5m including
 35.06m at 0.49% Ni and 0.015% Co
- Results pending for ten drill holes across Bardwell
- Five drill holes to be completed prior to estimation of mineral resource for Bardwell

Figure 1: Plan view of Boomerang Target drilling

Aston Minerals Limited (**ASX: ASO**, '**Aston Minerals**' or 'the **Company**') is pleased to provide an update on the resource definition drilling across the Bardwell Nickel-Cobalt Prospect, Edleston Project, Canada.

Managing Director, Dale Ginn commented "The resource definition drilling across Bardwell has rapidly expanded mineralisation over a strike length of ~2,000m, remaining open at depth and along strike. This phase was conducted along 100m to 150m spaced sections and approached from both sides of the host unit. Our exploration drilling at other targets along the Boomerang ultramafic complex is also ongoing with results pending in the Bardwell 2 area. Our mineralogy and metallurgical results to date have shown that we have predominantly high tenor Ni-Co sulphides that recover well and produce commercially acceptable concentrates. The discovery, definition and metallurgical advancement of the Bardwell deposit has all been accomplished in under one year, a remarkable achievement.

"We will commence the estimation of a mineral resource upon receipt of the remaining drill hole data. Additionally, we are preparing an exploration target to provide an indication of the potential scale of the entire Boomerang Nickel-Cobalt sulphide target.

"The nickel grade and scale of what has been defined to date at Bardwell appears comparable to that of BHP's Mt Keith operation and OZ Minerals Ltd's (ASX: OZL) West Musgrave Project. OZ Minerals just recently announced their investment decision to develop the West Musgrave Project. Intrinsic demand for high quality, substantial nickel sulphide assets such as the West Musgrave Project and Bardwell is ever increasing. This is largely being driven by a combination of the burgeoning demand for battery grade nickel and a lack of new substantial nickel sulphide discoveries.

"The exploration conducted to date by Aston has outlined a very significant nickel-cobalt sulphide system, in a Tier 1 mining jurisdiction. We have hydroelectric power traversing the Project and are on the doorstep of end users which do not have adequate supply of battery grade nickel to fulfill their projected consumption. Our next steps are to provide a resource estimation to accurately demonstrate the scale of the deposit and to commence a scoping study to outline the economics of the Project."

Bardwell Drilling

A total of 43 holes covering 2,000m of strike have been completed across Bardwell to date with 5 holes remaining to be completed under this current program. Results are currently pending for ten of the 43 completed drill holes.

Recent significant results from drilling undertaken include:

- DDED22-104 intersected 149.5m at 0.36% Ni and 0.012% Co from 294m including
 - o 18m at 0.58% Ni and 0.011% Co and
 - 17m at 0.46% Ni and 0.015% Co
- DDED22-096 intersected 213.35m at 0.31% Ni and 0.012% Co from 243.5m including
 - \circ $\,$ 58m at 0.4% Ni and 0.015% Co $\,$
- DDED22-088 intersected 188.08m at 0.35% Ni and 0.012% Co from 174.5m including
 - 35.06m at 0.49% Ni and 0.015% Co

- DDED22-085 intersected 33.03m at 0.3% Ni and 0.011% Co from 235.47m
- DDED22-087 intersected 85.5m at 0.33% Ni and 0.015% Co from 391.5m EOH in mineralisation
- DDED22-105 intersected 85.5m at 0.33% Ni and 0.12% Co from 235.5m EOH in mineralisation including
 - \circ $\,$ 2m at 1.37% Ni and 0.02% Co $\,$

Full details for the results received to date are set out in Appendices 1 and 2.

Figure 2: Cross section of Bardwell - looking north-east

Figure 3: Cross section of Bardwell - looking north-east

Upcoming News Flow

October:	Further drill hole results from Bardwell Nickel-Cobalt Sulphide
October:	Completion of resource definition drilling at Bardwell Nickel-Cobalt Sulphide
November:	Maiden mineral resource estimation for Edleston Main Gold
November:	Exploration target Edleston Main and Sirola Zone - Gold
November:	All remaining assay results for Bardwell Nickel-Cobalt Sulphide
December:	Maiden mineral resource estimation Bardwell Nickel-Cobalt Sulphide
December:	Exploration target Boomerang Nickel-Cobalt Sulphide

The Company notes this anticipated timeline is dependent on the receipt of assays and is based on the best estimate with regard to recent turnaround times.

Edleston Project Overview, Ontario, Canada (100% ASO)

The Edleston Project is located approximately 60km via road to the south of Timmins, Ontario, Canada. The towns of Timmins and Kirkland Lake are located close by and host significant former and current producers, with required services and skilled labour available to support exploration and development of the Project.

Figure 4: Edleston Project Location Plan

The Project is located within the Abitibi Greenstone Belt of Archean metavolcanic and medisedimentary units that have been steeply folded with axes trending in general east-west orientation.

The Boomerang Target is interpreted to be a Dunite/Peridotite unit which has undergone extensive serpentinisation. This process of is responsible for the reaction of olivine to produce magnetite and brucite, resulting in a strongly reducing environment whereby nickel is released from decomposition of olivine. The nickel which has been released is typically partitioned into low sulphur nickel sulphide minerals. Due to the magnetite association with mineralisation, a 3D inversion model of magnetics has been generated and has been utilised to assist with targeting.

This announcement has been authorised for release by the Board of Aston Minerals Limited.

Contacts For more information, please contact:

Dale Ginn Managing Director dale@astonminerals.com Rob Jewson Corporate Director rob@astonminerals.com

Competent Person's Statement

The information in this announcement that relates to the Exploration Results for Edleston Project is based on information compiled and fairly represented by Mr Robert Jewson, who is a Member of the Australian Institute of Geoscientists and Executive Director of Aston Minerals Limited. Mr Jewson has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he has undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Jewson consents to the inclusion in this report of the matters based on this information in the form and context in which it appears. The Company confirms there has been no new information that materially effects the results as they were first reported.

Hole	Size	Easting	Northing	Elevation	Azimuth	Dip	Final Depth (m)
DDED22-084	HQ	477453	5303618	356	130	-57	357
DDED22-085	HQ	477645	5303773	360	130	-45	420
DDED22-086	HQ	478007	5304186	352	130	-45	420
DDED22-087	HQ	477388	5303543	353	130	-65	477
DDED22-088	HQ	477645	5303773	360	130	-60	420
DDED22-089	HQ	478479	5304572	358	130	-45	654
DDED22-090	HQ	477388	5303543	352	130	-75	590
DDED22-091	HQ	477644	5303774	360	130	-75	455
DDED22-092	HQ	477644	5303774	360	0	-90	498
DDED22-093	HQ	477720	5303868	358	130	-45	447
DDED22-094	HQ	477292	5303333	361	130	-45	342
DDED22-095	HQ	478987	5305058	365	130	-45	714
DDED22-096	HQ	477720	5303868	357	130	-60	546
DDED22-097	HQ	477291	5303333	361	130	-60	393
DDED22-098	HQ	477720	5303868	357	130	-75	514.77
DDED22-099	HQ	478753	5306008	358	165	-45	468
DDED22-100	HQ	476933	5303241	359	130	-45	441
DDED22-101	HQ	476933	5303242	359	130	-75	552
DDED22-102	HQ	477781	5303955	358	130	-45	387
DDED22-104	HQ	477781	5303956	358	130	-60	492.23
DDED22-105	HQ	478760	5306003	358	265	-45	321

Appendix 1: Recent Diamond Drill Collar Details & Drill Intercepts

Hole	From (m)	To (m)	Interval (m)	Ni%	Co%	Comments
DDED22-084	178.32	349.04	170.72	0.24	0.011	EOH in Mineralisation
DDED22-085	162.05	279.5	117.45	0.28	0.011	
including	235.47	279.5	44.03	0.3	0.012	
including	269.96	278.48	8.52	0.36	0.016	
including	277	278.48	1.48	0.57	0.023	
DDED22-086	263.5	359.5	96	0.26	0.011	
including	301.92	314.01	12.09	0.33	0.012	
DDED22-087	338.3	477	138.7	0.27	0.012	
including	391.5	477	85.5	0.33	0.015	EOH in
and	396.75	406.5	9.75	0.47	0.016	Mineralisation
including	436.44	477	40.56	0.36	0.013	
DDED22-088	35	365	330	0.24	0.009	

Page 7 of 20 \ ACN 144 079 667 \ Suite 23, 513 Hay Street, Subiaco, WA info@astonminerals.com \ **www.astonminerals.com** \ +61 (08) 6143 6740

Hole	From (m)	To (m)	Interval (m)	Ni%	Co%	Comments
including	174.5	362.58	188.08	0.35	0.012	
including	283.44	362.28	78.84	0.38	0.013	
including	283.44	318.5	35.06	0.49	0.015	
DDED22-089	352.6	568	215.4	0.26	0.010	
DDED22-090	342.5	521.97	179.47	0.17	0.010	
including	436.48	467.03	30.55	0.3	0.013	
including	437.52	445.5	7.98	0.53	0.018	
DDED22-091	200.46	455.16	254.7	0.26	0.011	
including	252	286.5	34.5	0.35	0.012	EOH in Mineralisation
including	261.34	272.41	11.07	0.41	0.014	Winteralisation
DDED22-092	74.98	184	109.02	0.23	0.011	
DDED22-093	268	313	45	0.27	0.012	
including	278	299	21	0.31	0.012	
DDED22-094	179	224	45	0.26	0.013	
including	205	216	11	0.37	0.015	
DDED22-095	152.5	648	495.5	0.22	0.009	
DDED22-096	243.5	456.85	213.35	0.31	0.012	
including	357.5	415.5	58	0.4	0.015	
DDED22-097	223.5	256.5	33	0.3	0.013	
DDED22-098	16.5	119	102.5	0.25	0.011	EOH in
and	306.5	514.77	208.27	0.24	0.011	Mineralisation
DDED22-099	385.5	426	40.5	0.29	0.011	
DDED22-100	358.5	370.5	12	0.23	0.011	
DDED22-101	447.5	552	104.5	0.26	0.01	EOH in
including	527	552	25	0.3	0.011	Mineralisation
DDED22-102	271.5	338.5	67	0.29	0.011	
including	331	338.5	7.5	0.38	0.013	
DDED22-104	294	443.5	149.5	0.36	0.012	
including	315	333	18	0.58	0.011	
and	426.5	443.5	17	0.46	0.015	
DDED22-105	235.5	321	85.5	0.33	0.012	
including	262.5	312.5	50	0.37	0.014	EOH in
including	296.5	303.5	7	0.7	0.019	Mineralisation
including	297.5	299.5	2	1.37	0.02	

Appendix 2: Previously Reported Intercepts

Hole	From (m)	To (m)	Interval (m)	Ni%	Co%
DDED21-057	38.7	325.7	287	0.30	0.012
DDED21-059	84	228	144	0.38	0.014
DDED21-059	174.5	228	53.5	0.49	0.017
DDED21-065	106.5	251	144.5	0.24	0.010
DDED21-065	241	251	10	0.45	0.013
DDED21-065	513.5	547.3	33.8	0.27	0.010
DDED21-072	122	199	77	0.26	0.010
DDED21-072	171	182.4	11.4	0.40	0.011
DDED21-072	286	405.5	119.5	0.24	0.010
DDED21-073	312	499	187	0.27	0.011
DDED21-073	430.5	437.5	7	0.47	0.014
DDED21-075	13.1	744	730.9	0.23	0.010
DDED21-076	67.5	350	282.5	0.43	0.014
DDED21-076	186.5	350	163.5	0.51	0.016
DDED21-076	331.7	350	18.3	0.66	0.014
DDED22-079	170	228.89	58.89	0.25	0.009
DDED22-079	332.95	538	205.05	0.27	0.011
DDED22-080	425	520.61	95.61	0.28	0.011
DDED22-080	501.43	520.61	19.18	0.32	0.012
DDED22-080	426	458	32	0.32	0.012
DDED22-082	206.31	366.02	159.71	0.36	0.013
DDED22-082	282.06	365.06	83	0.44	0.016

Appendix 3: JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Comments
Sampling	• Nature and quality of sampling (eg cut channels, random chips,	Half HQ diamond drill core was submitted for analysis.
techniques	or specific specialised industry standard measurement tools	
	appropriate to the minerals under investigation, such as down hole	
	gamma sondes, or handheld XRF instruments, etc.). These examples	
	should not be taken as limiting the broad meaning of sampling.	
	· Include reference to measures taken to ensure sample	Core was cut into two equal halves with one submitted for analysis.
	representivity and the appropriate calibration of any measurement	
	tools or systems used.	
	· Aspects of the determination of mineralisation that are Material	Sample intervals was based on geological observations. Minimum
	to the Public Report. In cases where 'industry standard' work has	core width sampled was 0.3m and maximum 1.5m. Samples were
	been done this would be relatively simple (eg 'reverse circulation	submitted to ALS Laboratories Vancouver.
	drilling was used to obtain 1 m samples from which 3 kg was	
	pulverised to produce a 30 g charge for fire assay'). In other cases	
	more explanation may be required, such as where there is coarse	
	gold that has inherent sampling problems. Unusual commodities or	
	mineralisation types (eg submarine nodules) may warrant disclosure	
	of detailed information.	

Criteria	JORC Code explanation	Comments
Drilling	· Drill type (eg core, reverse circulation, open-hole hammer,	Standard tube HQ Diamond drilling was undertaken.
techniques	rotary air blast, auger, Bangka, sonic, etc) and details (eg core	
	diameter, triple or standard tube, depth of diamond tails, face-	
	sampling bit or other type, whether core is oriented and if so, by	
	what method, etc).	
Drill sample	· Method of recording and assessing core and chip sample	Field geologists measure core recoveries for every drill run
recovery	recoveries and results assessed.	completed. The core recovered is physically measured by tape
		measure and the length is recorded for every "run". Core recovery is
		calculated as a percentage recovery. Core recovery is logged and
		recorded into the database.
	· Measures taken to maximise sample recovery and ensure	Diamond drilling by nature collects relatively uncontaminated core
	representative nature of the samples.	samples. These are cleaned at the drill site to remove drilling fluids
		and cuttings to present clean core for logging and sampling.
	· Whether a relationship exists between sample recovery and	There is no significant loss of material reported in the mineralised
	grade and whether sample bias may have occurred due to	parts of the diamond core to date.
	preferential loss/gain of fine/coarse material.	
Logging	· Whether core and chip samples have been geologically and	Drill holes were logged for lithology, alteration, mineralisation,
	geotechnically logged to a level of detail to support appropriate	structure and weathering by a geologist. Data is then captured in a
	Mineral Resource estimation, mining studies and metallurgical	database appropriate for mineral resource estimation.
	studies.	

Criteria	JORC Code explanation	Comments
	· Whether logging is qualitative or quantitative in nature. Core (or	All cores are photographed in the core tray, with individual
	costean, channel, etc) photography.	photographs taken of each tray both dry and wet. Logging conducted
		is both qualitative and quantitative.
	· The total length and percentage of the relevant intersections	All drill holes were logged in full.
	logged.	
Sub-sampling	· If core, whether cut or sawn and whether quarter, half or all core	Diamond drill core was cut in half. Half the core was submitted for
techniques	taken.	analysis and the remaining half was stored securely for future
and sample		reference and potentially further analysis if ever required.
preparation	· If non-core, whether riffled, tube sampled, rotary split, etc and	Only diamond core drilling completed.
	whether sampled wet or dry.	
	· For all sample types, the nature, quality and appropriateness of	Sample preparation was completed by ALS Laboratories in
	the sample preparation technique.	Vancouver using their standard preparation method. Samples were
		crushed to 80% passing 2mm, riffle split and pulverized to 95%
		passing <75µm.
	· Quality control procedures adopted for all sub-sampling stages	Standard preparation procedure inclusive of internal laboratory
	to maximise representivity of samples.	internal crushing and pulverizing tests were utilised by ALS
		Laboratories.
	· Measures taken to ensure that the sampling is representative of	Field duplicate samples were taken at the rate of 1:25 samples.
	the in situ material collected, including for instance results for field	Standard reference materials and blanks were similarly inserted at
	duplicate/second-half sampling.	the rate of 1:25 before and after predicted high grade intervals
		multiple blanks were inserted to ensure that there was no cross
		sample contamination. QAQC verified that the blank material

Criteria	JORC Code explanation	Comments
		reported below detection and thus no cross contamination between
		samples.
	· Whether sample sizes are appropriate to the grain size of the	Sample sizes are considered appropriate to the mineralisation style
	material being sampled.	and grain size of the material.
Quality of	· The nature, quality and appropriateness of the assaying and	Both four acid digest ICP total digestion and ICP two acid (aqua regia)
assay data	laboratory procedures used and whether the technique is	partial digestion methods were utilised on all samples. This was
and	considered partial or total.	aiming to determine an indicative proportion of sulphide versus
laboratory		silicate associated nickel on the basis of the partial digestion method
tests		being ineffective at liberating silicate hosted nickel mineralisation.
		The high degree of correlation indicated between the two results is
		indicative of a high proportion of sulphide associated mineralisation.
		ICP total digestion method involved analysis of a pulp by gently
		heating in a mixture of ultrapure $HF/HNO_3/HClO_4$ until dry and the
		residue dissolved in dilute ultrapure HNO ₃ .
		ICP partial digestion method involved analysis of a pulp digested
		with 8:1 ultrapure HNO ₃ :HCl for 1 hour at 95°_{c} .
	· For geophysical tools, spectrometers, handheld XRF	An Olympus Vanta VMR pXRF in Geochem mode was utilised to
	instruments, etc, the parameters used in determining the analysis	assist with identification of nickel sulphide minerals Readings were
	including instrument make and model, reading times, calibrations	collected over 40 second intervals for all 3 beams. The instrument is
	factors applied and their derivation, etc.	calibrated according to the manufacturer's specifications and a

Criteria	JORC Code explanation	Comments
		calibration check is performed daily to confirm the unit is operating
		within expected parameters as well as a performance test against a
		certified reference material. The manufacturer's most recent
		certificate of calibration is dated July 28, 2021 with nickel
		performance calibrated from OREAS 74a and GBM 398-4 certified
		reference materials.
	· Nature of quality control procedures adopted (eg standards,	Standard reference materials and blanks were inserted routinely at
	blanks, duplicates, external laboratory checks) and whether	the rate of 1:25 samples.
	acceptable levels of accuracy (ie lack of bias) and precision have	
	been established.	
Verification	· The verification of significant intersections by either	Results were reviewed by the chief geologist, managing director and
of sampling	independent or alternative company personnel.	competent person.
and assaying	· The use of twinned holes.	None of the current holes being drilled are considered to be twin
		holes.
	· Documentation of primary data, data entry procedures, data	All data was recorded in field logging sheets, digitsed then imported
	verification, data storage (physical and electronic) protocols.	into a validated database.
	Discuss any adjustment to assay data.	No adjustments were performed to assay data.
Location of	Accuracy and quality of surveys used to locate drill holes (collar	Drill collar locations were surveyed using a differential GPS.
data points	and down-hole surveys), trenches, mine workings and other	
	locations used in Mineral Resource estimation.	
	· Specification of the grid system used.	All collar locations are reported in NAD83- 17N grid system.

Criteria	JORC Code explanation	Comments
	• Quality and adequacy of topographic control.	Topographic control on collars was derived from a LIDAR survey completed across the Project. LIDAR is considered to be industry best practice for this stage of exploration.
Data spacing and	• Data spacing for reporting of Exploration Results.	Diamond drill holes are drilled selectively directly targeting mineralisation based on regional orientations known along strike.
distribution	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The spacing of the area being targeted by drilling underway at present is too broad for being able to estimate a mineral resource.
	• Whether sample compositing has been applied.	Sample compositing has been applied. Results reported are length weighted averages.
Orientation of data in relation to	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Based on the logging of the drilling and interpretation of the geology the drilling completed is interpreted to be perpendicular to the trend of mineralisation.
geological structure	• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The drilling intercept reported is downhole. Further drilling is required to confirm the geometry of mineralisation.
Sample security	• The measures taken to ensure sample security.	Diamond drill core is transported from site by contractors to a secured core processing facility for logging and sampling. Samples are subsequently sent by a contractor to the assay laboratory.

Page 15 of 20 \ ACN 144 079 667 \ Suite 23, 513 Hay Street, Subiaco, WA info@astonminerals.com \ **www.astonminerals.com** \ +61 (08) 6143 6740

Criteria		JORC Code explanation	Comments
Audits	or	• The results of any audits or reviews of sampling techniques and	No audits are documented to have occurred in relation to sampling
reviews		data.	techniques or data.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral	• Type, reference name/number, location and ownership including	The Edleston Project is 100% owned by a wholly owned subsidiary
tenement and	agreements or material issues with third parties such as joint	of Aston Minerals Ltd.
land tenure	ventures, partnerships, overriding royalties, native title interests,	
status	historical sites, wilderness or national park and environmental	A 2% net smelter return royalty applies across the Project. 1% of the
	settings.	net smelter return royalty can be purchased for \$1,000,000 across
		the mining claims and 1% of the net smelter return royalty can be
		purchased for \$1,000,000 across the Leased Claim.
	• The security of the tenure held at the time of reporting along	Open file verification has been conducted to confirm licenses are in
	with any known impediments to obtaining a licence to operate in the	full force.
	area.	
Exploration	• Acknowledgment and appraisal of exploration by other parties.	Exploration reported was completed by 55 North Mining Inc
done by other		(Formerly SGX Resources Inc.). Activities completed include
parties		magnetic surveys, VLF/IP surveys, extensive diamond drilling.

Criteria	JORC Code explanation	Commentary
Criteria Geology	 Deposit type, geological setting and style of mineralisation. 	Regionally, Edleston appears to lie along the potential western extension of the Cadillac-Larder fault zone along which a number of major gold deposits are located. Geophysical and geological work has demonstrated that the Edleston Zone sits within the north limb of the host unit/horizon that stretches over 10 km to the east. This unit is broadly folded back toward the south and east immediately to the west of the deposit continuing under and near the contact
		 with shallow sedimentary cover. The host rock is an altered and sheared ultramafic that exhibits extensive silicification and contains quartz-carbonate in veins, veinlets and fracture fill. A revised geological interpretation based on the information obtained from recent drilling and reprocessed magnetics coverages was undertaken. Through this process the extent and intense
		magnetic response of the Boomerang Target was recognised. Magnetic inversion modelling of the Boomerang Target was undertaken to further constrain the geometry and extent of the dunite/peridotite complex. It is interpreted that this dunite/peridotite body extends for a strike of 5km, is 500 to >1,500m wide and extends to depths of well over 500m.

Criteria	JORC Code explanation	Commentary
		The exploration model applied to conduct targeting of this body is
		analogous to Dumont and Crawford Nickel-PGE-Cobalt Deposits.
		Nickel sulphide mineralisation at these deposits was formed
		through the serpentinisation of a dunite unit (rock composed of
		>90% olivine). Through the reaction of olivine with water, extensive
		magnetite is developed hence providing such a strong magnetic
		response and potentially allowing for a direct exploration targeting
		method to be applied. Through this process of serpentinisation
		nickel is liberated from olivine within a strongly reducing
		environment and the liberated nickel is partitioned into low sulphur
		nickel sulphide minerals.
Drill hole	• A summary of all information material to the understanding of	Drill hole locations are described in the body of the text, in the
Information	the exploration results including a tabulation of the following	appendix and on related Figures.
	information for all Material drill holes:	
	o easting and northing of the drill hole collar	
	o elevation or RL (Reduced Level – elevation above sea level in	
	metres) of the drill hole collar	
	o dip and azimuth of the hole	
	o down hole length and interception depth	
	o hole length.	
	\cdot If the exclusion of this information is justified on the basis that	All information has been reported. At present no sampling or
	the information is not Material and this exclusion does not detract	analysis has been completed.

Page 18 of 20 \ ACN 144 079 667 \ Suite 23, 513 Hay Street, Subiaco, WA info@astonminerals.com \ **www.astonminerals.com** \ +61 (08) 6143 6740

Criteria	JORC Code explanation	Commentary
	from the understanding of the report, the Competent Person should	
	clearly explain why this is the case.	
D ://		
Data	In reporting Exploration Results, weighting averaging	Length weighted averages are reported in the highlights and body
aggregation	techniques, maximum and/or minimum grade truncations (eg	of the announcement. A full listing of the individual intervals is
methods	cutting of high grades) and cut-off grades are usually Material and	reported in the body of the release above.
	should be stated.	
	· Where aggregate intercepts incorporate short lengths of high	Length weighted averages have been applied where necessary to
	grade results and longer lengths of low grade results, the procedure	calculate composite intervals. Calculations were performed in excel
	used for such aggregation should be stated and some typical	using the sumproduct function to calculate the length weighted
	examples of such aggregations should be shown in detail.	average grades.
	· The assumptions used for any reporting of metal equivalent	No metal equivalence are reported.
	values should be clearly stated.	
Relationship	• These relationships are particularly important in the reporting of	Intervals of alteration and mineralisation reported are apparent
between	Exploration Results. · If the geometry of the mineralisation with	widths. Further drilling is required to understand the geometry of
mineralisation	respect to the drill hole angle is known, its nature should be reported.	mineralisation and thus the true width of mineralisation.
widths and	· If it is not known and only the down hole lengths are reported,	
intercept	there should be a clear statement to this effect (eg 'down hole	
lengths	length, true width not known').	
Diagrams	· Appropriate maps and sections (with scales) and tabulations of	Maps and plans have been included in body of the announcement.
	intercepts should be included for any significant discovery being	
	reported These should include, but not be limited to a plan view of	
	drill hole collar locations and appropriate sectional views.	

Page 19 of 20 \ ACN 144 079 667 \ Suite 23, 513 Hay Street, Subiaco, WA info@astonminerals.com \ **www.astonminerals.com** \ +61 (08) 6143 6740

Criteria	JORC Code explanation	Commentary
Balanced	• Where comprehensive reporting of all Exploration Results is not	All information has been reported.
reporting	practicable, representative reporting of both low and high grades	
	and/or widths should be practiced to avoid misleading reporting of	
	Exploration Results.	
Other	• Other exploration data, if meaningful and material, should be	No other exploration data is considered meaningful and material to
substantive	reported including (but not limited to): geological observations;	this announcement.
exploration	geophysical survey results; geochemical survey results; bulk samples	
data	- size and method of treatment; metallurgical test results; bulk	
	density, groundwater, geotechnical and rock characteristics;	
	potential deleterious or contaminating substances.	
Further work	• The nature and scale of planned further work (eg tests for lateral	Further exploratory drilling along the strike length of the Boomerang
	extensions or depth extensions or large-scale step-out drilling).	target is proposed to be undertaken.
	• Diagrams clearly highlighting the areas of possible extensions,	Maps including the location of samples and prospects are included
	including the main geological interpretations and future drilling	in the body of this release.
	areas, provided this information is not commercially sensitive.	

